
Software Design

February 7th, 2020

Canopy - Team 11

Team Members:
Robert Plueger

Dongyu Xia
Maria Granroth

Sponsor: Dr. Patrick Jantz, Ph.D.
Mentor: Scooter Nowak

Version 1.4

Table of Contents
1 Introduction ……………….…………….……………….……………….……………….……………….…………. 2 - 3

2 Implementation Overview …………….………………….………………….………………….…………….……. 3

3 Architectural Overview …………….………………….………………….………………….…………………. 4 - 7

3.1 Discussion ………………………….………………….………………….………………….…………... 4 - 7

3.1.1 User Login ………………………….………………….………………….………………….…… 5

3.1.2 Area Selected ………………………….………………….………………….………………….. 5

3.1.3 Function(s) Selected ………………………….………………….………………….………. 5

3.1.4 Download Choice Selected ………………………….………………….………………... 6

3.1.5 Shapefile Preparation ………………………….………………….………………….……. 6

3.1.6 Retrieve Data ………………………….………………….………………….…………………. 6

3.1.7 Perform Requested Function(s) ………………………….………………….……….. 6

3.1.8 Perform Clustering ………………………….………………….………………….………... 7

3.1.9 Graph Results ………………………….………………….………………….………………… 7

3.1.10 Readout Summary ………………………….………………….………………….………...7

3.1.11 Package Results ………………………….………………….………………….…………….. 7

3.1.12 Return to User ………………………….………………….………………….………………. 7

4 Module and Interface Descriptions …………….………………….………………….………………… 8 - 11

4.1 User Login ……………………….…………….……..…………….………………….………………….…… 8

4.2 Area Selected ………………………….………………….………………….………………….……... 8 - 9

4.3 Function(s) Selected …………………….………………….………………….…………………...…… 9

4.4 Download Choice Selected ………………………….………………….………………….……….… 9

4.5 Shapefile Preparation ……………………….………………….………………….………………….… 9

4.6 Retrieve Data ………………………….………………….………………….………………….…………… 9

4.7 Perform Requested Function(s) ………………………….………………….…………………… 10

4.8 Perform Clustering ………………………….………………….………………….………………….… 10

4.9 Graph Results ………………………….………………….………………….………………….………... 10

4.10 Readout Summary ………………………….………………….………………….………………….… 11

4.11 Package Results ………………………….………………….………………….………………….……... 11

4.12 Return to User ………………………….………………….………………….………………….……….. 11

5 Implementation Plan …………….………………….………………….………………….………………….…….. 12

6 Conclusion …………….…………….………………….………………….………………….………………….…..…… 13

1

1 Introduction

We are Canopy, a 2019 - 2020 Northern Arizona University Computer Science
capstone team. Our team members are Robert Plueger (team lead), Maria
Granroth, and Dongyu Xia. Our project is to develop an application for
characterizing 3D vegetation structure in tropical ecosystems. We will analyze
the data obtained from the Global Ecosystem Dynamics Investigation (GEDI).
GEDI data is collected via lidar, laser ranging of forests and topography. The
data consists of the 3D distribution of stems, branches, and leaves, making up
the vegetation structure of ecosystems. GEDI is an Earth Ventures mission that
started in December 2018 and is funded by NASA. GEDI will acquire billions of
vegetation profiles across the Earth’s temperate and tropical ecosystems in two
years.

The sponsor and client of this project is Dr. Patrick Jantz. He is a member of the
Vegetation Structure as an Essential Biodiversity Variable (VSEBV) project
based at NAU. He is also a team member funded by the NASA Applied Sciences
program. He will use GEDI data to develop vegetation structure essential
biodiversity variables (EBVs). EBVs can be used by policy makers and scientists
to improve land use decisions and guide priorities for conservation of
biodiversity in tropical landscapes.

The reason for this project is that current workflows are clumsy and require a
lot of manual work. Our client needs to use the R language to process a large
amount of GEDI data repeatedly, and the workflows require that users know
how to code. The primary goal is to create an application to help improve
processing speed and accuracy while reducing repetition and manual steps. We
envision an application that supports both researchers and policy makers while
making the analysis process easier on people who do not know how to code.
High quality analysis from our web application will make it easier for our end
users to make decisions for conservation and resource management.

This application allows users to log in and choose a region to analyze. When the

user selects an area, the software will acquire GEDI data and analyze it. The

application automatically generates the desired analysis for users to view and

2

download. Our application is expected to process 50,000 files in an hour. If the

user selects an entire country or continent, the processing time is expected to

be up to 3 days. Our application plan is written in Python. The computation and

website will run on the web hosting service Microsoft Azure, so our

application’s primary environmental constraints will be the computation speed

of the server and the price of the service.

2 Implementation Overview

This section will discuss our project solution and the tools we will be using to
aid us in our project. We will discuss how our solution works and how each tool
will help us in our goal.

Our project solution is to create a website that can analyze GEDI data and return
data of the user’s choosing. We have four main components that will assist in
the creation of our product.

We must be able to publicly host our product. We are using Microsoft Azure to
host our website. Not only will Azure be able to make the website available for
public use, it will be able to store data and allow for backend calculations. We
will be allotted monthly speed and storage.

We are required to compute a large amount of data, and we are using Python to
compute the necessary operations. To assist with the combination of Python
and HTML, we are using Flask, a web framework that utilizes Python. This
allows us to produce analytic results, read files, and deliver files through the
backend of our product.

We will also be working with uploaded shapefiles. Our primary operation on
shapefiles will be checking the validity of their formats. This is necessary
because we are utilizing shapefiles to extract data from NASA’s Application for
Extracting and Exploring Analysis Ready Samples (AppEEARS) database. We
will be using GeoPandas, a Python package involved with shapefiles, to help
check that any uploaded shapefile is formatted correctly.

Additionally, we will be visualizing shapefiles. Along with GeoPandas, we will
be using Folium, a package interface of Leaflet, a mapping software. Folium is

3

compatible with Flask, and will allow us to easily map shapefiles and allow
users to manually create shapefiles via a map.

3 Architectural Overview

This section will discuss what our system will do in order to produce the desired
analysis for the user. We will indicate what modules will be included, list what
their responsibilities are, and describe how information will flow from one
module to the next.

Diagram 1 demonstrates our system’s architecture. Every module pictured will
be a component in the system. Blue boxes indicate modules that are frontend
and can be interacted with by the user via the user interface. Yellow boxes
indicate modules that are backend and will not be visible to the user while the
application is performing those steps.

Diagram 1 - Architectural Diagram

4

3.1 Discussion

The style used to build our system’s architecture was loosely based off of the
standard model-view-controller (MVC) pattern commonly found in web
applications. As demonstrated in Diagram 1, our system can be broken into two
primary sections- the frontend and the backend. The frontend acts as the
“view” portion of the MVC pattern, where the user can interact with the
application, while the backend acts as both the “model” and “controller”
portions of the pattern, where data is processed.

Moving forward, we will list the responsibilities and features of each module
and describe how the individual modules will communicate and connect. Flask
will be the most helpful technical component in assisting us with
communication between the backend and frontend. Using Flask’s framework, a
button click on the user interface can be directly mapped to the corresponding
functions in the backend.

3.1.1 User Login

● Login using the Earthdata Login API

The Earthdata Login API will be utilized to allow users to log in. Users
need to do this in order to use our website. We will need this login
information in order to retrieve data in module 6 in Diagram 1.

3.1.2 Area Selected

● Menu dropdown
● Load own shapefile
● Select from map

The user will have these three options for selecting their area. Each
area-selection option will be linked to different shapefile preparation
methods in module 5 in Diagram 1.

3.1.3 Function(s) Selected

1. Number of Observations - The total number of lidar pings that were
performed in that area

2. Data Quality - The average quality of the observations

5

3. Density of Observations - The amount of observations per km2
4. Standard deviation of the density of observations - Standard

deviation performed on the density of observations
5. Mean Vegetation Height - The average vegetation height found over

the entire area
6. Standard Deviation of Vegetation Height - The standard deviation of

the vegetation heights found over the entire area

As a baseline, the user will have these six options for functions. They may select
one or many. More functions may be added later on.
3.1.4 Download Choice Selected

● Just results
● Just raw data
● Raw data and results

The user has these options for what they’d like to receive after our
system is done analyzing their area. This information will be referenced
in module 11 when the system packages the appropriate files.

3.1.5 Shapefile Preparation

● Retrieve
● Clean and format
● Generate

The shapefile preparation is dependent on what option the user used to
choose their area in module 2 in Diagram 1. If the user used the menu
dropdown, then a preloaded shapefile will be retrieved from our system.
If the user uploaded their own shapefile, then our system will clean and
format the shapefile to be appropriate for AppEARS expectations. If the
user selected an area via the map, then the system will generate a
shapefile based on the coordinates selected. Module 6 in Diagram 1 will
need the shapefile from this step in order to make the AppEARS API call
for the data.

6

3.1.6 Retrieve Data

● AppEARS API call

In order to retrieve the data, the system will make an AppEARS API call
using the user’s login information from module 1 and the prepared
shapefile from module 5 in Diagram 1.

3.1.7 Perform Requested Function(s)

● Analysis via Python

Python math will be used to perform the functions requested by the user
in module 3 in Diagram 1.

3.1.8 Perform Clustering

● Determine what forest structure classes are found in that area

Three different clustering methods (hierarchical, k-means, and
Python’s hdbscan package) will be applied to the data to determine what
different forest structure classes are found in that area. This will help
visualize the quality of the habitat.

3.1.9 Graph Results

● Graph clustering results based on classes found

Using the information found in module 8 in Diagram 1, the system will
produce a graph of the clustering results based on the percentage of
different classes found in the area.

3.1.10 Readout Summary

● Summarize the function and clustering results in a csv file

The system will print the various results from the analysis in module 7 in
Diagram 1 and clustering in module 8 in Diagram 1 into a csv file for easy
interpretation.

7

3.1.11 Package Results

● Package appropriate files for easy data transferring

The system will package files based on what the user chose for download
results in module 4 in Diagram 1.

3.1.12 Return to User

● Email the packaged results and/or data to the user

The system will email the package made in module 11 in Diagram 1 to the
email address the user used to log in in module 1 in Diagram 1.

4 Module and Interface Descriptions

This section will detail the functionality and connectivity of our product. It will
present what each module does, and will lay out how each module interacts
with others.

Diagram 2 - Function Sequence

8

Diagram 2 demonstrates the functions the system will be using in order to
produce the end result. The functions that return something important to other
functions indicate what they return by an arrow and a bolded variable name.
The red numbers in brackets next to each function references the module
number that the function is dependent on.

4.1 User Login

An Earthdata user login is necessary in order to retrieve GEDI data for module 6
in Diagram 2. Earthdata provides a login API that we will use for this purpose.
The API will help us retrieve a login token to use on the behalf of the user for
the AppEARS API call to retrieve the data. The API will also be used to retrieve
the user’s email address to send them their data in module 12 in Diagram 2.
Since this module is frontend and HTML based, it does not have traditional
functions.

4.2 Area Selected

The user will need to select an area to analyze. This can be done via our
dropdown menu, selection on the map, or by uploading their own shapefile.
This module is also part of the user interface, so there are no functions to
describe. Each option to select an area will be mapped to an appropriate
function in module 5 in Diagram 2.

4.3 Function(s) Selected

The user can select one or many functions to analyze their data with on the user
interface. Each button option selected here will be mapped to its corresponding
function in module 7 in Diagram 2.

4.4 Download Choice Selected

On the user interface, the user can choose to download just the results, the raw
data, or both the results and the raw data. The option chosen here will be
referenced in module 11 in Diagram 2.

9

4.5 Shapefile Preparation

Depending on how the user made their area selection in module 2 in Diagram 2,
there are a few different ways shapefiles can be prepared for them in this
module. If the user selected an area via the dropdown menu, selectShapefile
will be called, using their area choice as a parameter. This function will grab a
preloaded shapefile. If the user selected an area via selection on a map,
generateShapefile will be called. This function will use Folium to write a
shapefile based on the coordinates selected on the map. If the user uploaded
their own shapefile, formatShapefile will be called, using the uploaded
shapefile as a parameter. This function will clean and format the shapefile to fit
WGS 84, which is the standard for geographic datasets. This function will
utilize the Python package GeoPandas in order to do this.

The shapefile prepared in this module will be referenced in module 6 in
Diagram 2.

4.6 Retrieve Data

We will retrieve data from NASA’s AppEEARS database via the AppEEARS API.
We will get the user’s login token from module 1 in Diagram 2 using the
function getLogin. This will obtain the user’s login token utilized by NASA’s
Earthdata login API. Then, we will request data from the database, sending the
shapefile and the user’s login token from modules 1 and 5 in Diagram 2 as
parameters. This request will be sent using the function retrieveData. Modules
7 and 8 in Diagram 2 rely on this data to perform their operations.

4.7 Perform Requested Function(s)

We will perform the statistical analyses requested by the user in module 3 in
Diagram 2. The data from module 6 in Diagram 2 will be read and the following
functions may be performed:

● numObservations - this function will analyze how many lidar
observations were collected in the retrieved data

● dataQuality - this function will analyze the numeric quality level
of the retrieved data

10

● densityObservations - this function will compute the number of
lidar observations per unit of area

● standDevDensityObserv - this function will compute the standard
deviation of the lidar observations per unit of area

● meanVegHeight - this function will compute the mean height of
the observed vegetation

● standDevVegHeight - this function will compute the standard
deviation of the height of the observed area

Each of these functions will return their results to a dictionary so that printCSV
in module 10 in Diagram 2 may reference them when it generates the summary
for the user. The dictionary layout may look something like this:

{ numObservations : <return into here>, dataQuality:

<return into here>, ... }

4.8 Perform Clustering

In this module, three different clustering methods will be applied to the data to
determine what different forest structure classes are found in that area. The
functions kmeans, hdbscan, and hierarchical will all be run using the retrieved
data from module 6 in Diagram 2 as their primary parameter. In order to
determine which clustering method was the most effective for that particular
dataset, bestClusteringOption will compare the results from all three functions.
Since we do not have a known cluster structure for these datasets, we will be
using internal indices to measure the performance of each algorithm. The
results of the best performing clustering algorithm will be what is referenced in
modules 9 and 10 in Diagram 2.

4.9 Graph Results

The function graphResults will produce a graph based on the clustering
procedure done in module 8 in Diagram 2. The graph will represent and
illustrate the classes of forests in which different forest regions belong. This
graph will be packaged in module 11 in Diagram 2.

11

4.10 Readout Summary

Modules 7 and 8 in Diagram 2 will produce a csv file that contains a summary of
the analyses and clustering performed. The function printCSV will reference the
dictionary that stores the results of all of the statistical functions that were run
in module 7 in Diagram 2, along with the results of the most efficient clustering
algorithm found in module 8 in Diagram 2. The results of printCSV will be
packaged in module 11 in Diagram 2.

4.11 Package Results

The analyses and clustering results, summarized in modules 9 and 10 in
Diagram 2, will be packaged to be sent to the user, shown in module 12 in
Diagram 2. The items packaged will be determined by the user’s choice in
module 4 in Diagram 2. The function packageResults will perform this
packaging.

4.12 Return to User

The user will receive their requested analytics back in the form of a csv, png, or
ZIP file via email. First, we must retrieve the user’s email from their account
from module 1 in Diagram 2. The user will then be sent the packaged items from
module 11 in Diagram 2. The function returnToUser will send the email to the
user with the package attached. Note that the user will not see any data that is
not returned to them via email.

12

5 Implementation Plan

Diagram 3 provides a detailed Gantt chart of our team’s expected schedule. Before

Week 4, each member needs to learn and be familiar with the tools we need. Then in

Week 4, we need to complete the statistical functions we currently need, and link

these python functions to our flask website. After that, we need to complete the

shapefile preparation, and make sure our application can output the result of the data

we get and package the results in Week 5. In Week 6, We will plan to complete user

login, retrieve data, download choice selected and perform clustering. In Week 7 , we

will complete the area selected and return the results to the user.

 So far, most of the functions of our software have been realized. In the following time

we will continue to communicate with our client and further improve our software.

This schedule can help us to arrange and plan the time very well. It clearly shows when

and what tasks we should complete. At the same time, it also sets aside a spare space

to handle unexpected deviations in our plan.

Diagram 3 - Gantt Chart for Spring 2020

13

6 Conclusion

This project is to develop an application to describe the three-dimensional vegetation

structure of tropical ecosystems. Our application will analyze the data obtained from

GEDI. The originator and client of this project is Dr. Patrick Jantz. He will use GEDI

data to develop basic biodiversity variables of vegetation structures. Policymakers and

scientists can use these variables to improve land use decisions and guide priorities

for the protection of biodiversity in tropical landscapes.

Our application can help users analyze GEDI data. The user can log in to their

Earthdata account and retrieve data from their account. Our users can select areas

through a menu, map, or by uploading their own shapefile. After that, our application

will analyze the data for the area selected by the user, and the results will be packaged

and sent to the user.

So far, we have completed the compilation of statistical equations and successfully

linked our equations to our website. We have also completed the acquisition of data

and shapefiles. According to our schedule, our current development is in good

condition. We are confident that we can complete the components laid out in our

schedule. We also believe that our application will perfectly realize the requirements

expected by our sponsor.

14

